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'\ ABSTRACT

\
The lower hybrid drift instability was studied with a two dimensional elec-

trostatic simulation code. Simulations showed good agreement of the measured
local growth rates and frequencies with the results of local theory during the
early stage of wave growth. At later times nonlocal effects become important,
and a coherent mode structure develops. This normal mode was observed to

propagate up the density gradient.

At zero plasma beta and zero electron temperature, we found that the /

lower hybrid drift instability is stabilized by the local current relaxation due to; .

both ion quasilinear diffusion and electron ExB trapping which causes electroﬁ-

!

heating 10 occur. i
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I. INTRODUCTION

In the past several years the lower hybrid drift instability’ has attracted considerable
interest within the plasma physics community, since it is likely that this mode limits plasma
confinement in theta pinches and field- reversed configurations. This instability was simulated
by two of the authors previously in the low drift velocity regime ( v,<< v, ) by using an one-
dimensional, electrostatic particle hybrid code?. v =v,—yv, is the difference between the elec-
tron and ion cross-field velocities, and v,;=(T/m,)" is the ion thermal velocity. It was found
that if the relative electron-ion drift velocity is kept constant in time, which models a finite beta
plasma’ , ion trapping causes saturation of the instability. If this drift is allowed to decrease
consistent with momentum balance, which is related to the zero beta plasma case, then satura-
s .

tion is due to current relaxation* Two dimensional particle simulations of this instability

with a finite plasma beta value for large drift velocities ( v;>> v, ) were performed by Winske

and Liewer®

. lon trapping was also the saturation mechanism in their simulations. Qur object
in this paper is to study the lower hybrid drift instability at zero plasma beta in the low drift

velocity regime with both a two dimensional electrostatic simulation code and a nonlocal theory.

A slab configuration is used with a density gradient in x (Fig. 1). In the initial Vlasov
equilibrium, the ion pressure gradient balances the zeroth order ambipolar electric force on the
ions. Since the characteristic frequency of the lower hybrid drift instability is much greater than

the ion cyclotron frequency, the ions may be treated as unmagnetized particles.

Simulations show good agreement of the measured local growth rates and frequencies
with the results of local theory* during the early stage of wave growth when the wave energy is
mostly localized at the region x; where electrons have the largest Ex B drift velocity. After a
transit time, i.e., the time for the wave pocket traveling at the group velocity to across the
whole system along the density gradient. Nonlocal effects become important and a coherent
mode structure develops. This normal mode is observed to propagate from xp across the zeroth

order density gradient to regions where the electron drift velocity vg equals the wave phase

velocity (w/k,) , and to be damped by these resonant electrons. vg is electron Ex B drift velo-
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city due to the ambipolar electric field.

Al zero plasma beta and zero electron temperature, we found that the lower hybrid drift
instability is stabilized by current relaxation due to both ion quasilinear diffusion** and electron
ExB trapping” . According to Drake and Huba’ , electrons with a drift velocity (including both
the zeroth order and the perturbed Ex B drift velocity in the y direction) which is greater than
or equal to the wave phase velocity, are in resonance with the wave, and can become trapped.
This electron Ex B trapping was observed in the simulation. The trapping caused local current
relaxation by modificating of the electron density profile. The neighborhood of the point where
the electrons have the greatest relative drift velocities is the most unstable region according to
local theory. In this region, we found that the current relaxes by modification of the ion velo-

¢..y distribution function as well.

In Sec. II, a description of the simulation model and initial equilibrium is presented.
Comparisons of observed linear, local properties of the lower hybrid drift instability with linear
local theory are made and given in Sec. IIIA. Section IIIB is devoted to nonlocal effects of the
lower hybrid drift instability. A nonlocal theory is presented. Curren.t relaxation caused by ion
quasilinear diffusion and electron ExB trapping is discussed in Sec. IV, Conclusions are given

in Sec. V.

I1. SIMULATION MODEL AND INITIAL EQUILIBRIUM

In our simulations, a slab configuration was assumed and the Vlasov equilibria are func-
tions of x only. All the zeroth order drift velocities are in the y direction and the uniform mag-
netic field is in the z direction. The simulations were carried out in the x-y plane by using the
two-dimensional electrostatic, fully nonlinear particle code, EZOHARS? . In EZOHAR, the
boundary conditions along x are inversion symmetry® at the high density side and a reflecting

boundary at the low density side. The simulation system is periodic in the y direction.

Since the mode frequency of the lower hybrid drift instability is much higher than the ion

cyclotron frequency, ions are assumed to be unmagnetized. In the equilibrium, it was assumed




that the ion pressure force is »alanced by the zeroth order ambipolar electric force. From the

Vlasov equation, the ion distribution function is then only a function of energy H, where

H = mv/2+edlx) . (1

Let the ion distribution function f,(#,) be exponential, as

f(H) = Cexpl(=m,v*/2+ed(x)/T] . (2)
Rewrite Eq. (2) as a product,

S(H) = 1(x)g(v) . (3)
Here

g(v) = Cexp(—m,v¥/2T) (4)
is the Maxwellian distribution. The ion density profile is

¢(X);¢(0)

n{x) = ngexp (5)

ng is the ion density at x=0.
Simifarly, the electron equilibrium distribution function is a function of two electron
invariants: energy,

H, = mv¥2—ed(x) 6)

and the guiding cente; position

X=x=vw, . (7N

Let the electron distribution function f,(H,,X) be given as

f(H,X) = F(X)exp(—m,v¥2+ed)/ T, . (8)
For a small electron gyroradius and a slowly varying ambipolar field, i.e., a,(d¢/dx)¢"1<<1 ,

the electric potentiai can be expanded around the guiding centar position as

&(r) = ¢(X)+Ax%fx+ ...... )
where
Ax = x=-X = v /o, (10

is the electron displacement from its guiding center. Therefore, Eq. (9) becomes

d(x) = o(X) = v, E(N)/w, . (11)
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Substitute Eq. (11) into Eq. (8) and rewrite Eq. (8) as

2
m vi(X)/2+ed(X)  m, [ , 2
FAHLX) = F(X)exp[ = -3 [vx+[vy— e () ]

=N, (X)g.(v) (12)

where ¥, (X) is the electron guiding center density profile and

8e(V) = C,exp[—&[vf-#[vy— vE(X)]I]} (13)
T,
is the electron drifting Maxwellian distribution.

From the Poisson equation,

dE(x)
— =dreln(x) = n,(x)] | ' (14)

and Eq. (5), n(x) and n.(x) can be determined by choosing an appropriate E(x) , where
n.(x) is the electron particle density. The E field with the form

E(x) = —2Eganh(x/L)sech(x/L) , (15)
which gives a peak value as —Eg at x=xg=Lsinh™'(1) , was chosen in our simulations. There-

fore, the ion density profile is

2ef..ol'tanhz(x/L)] . (16)

!

n(x) = noexp[-
The electron density n, can be obtained by substituting Egs. (15) and (16) into Eq. (14).
According to Eq. (12), electrons have to be loaded by following the electron guiding center

density profile N,(X) which can approximately be expressed in terms of », as

a} &n,
N(X) = n,(x)+—4—-le , a7n

dn - . . .
for a,-z'-/ n.<<1 . Hence, the electron guiding center density N,(X) is determined once

E(x) has been specified. Equilibrium profiles of the normalized ion density n,{x)/ no and the

relative electron-ion drift velocity vg(x) are shown in Figs. 2(a) and (b).

There was a 64x64 spatial grid in the simulated system. The dimension in x was 42.43A p,

and that in y was 44.43A p, , where A p, is the ion Debye length. Time step wpd =0.2 was
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chosen and 32768 particles were used for each species. The mass ratio m,/m, in the simulation
was 100 and w j,/w L=] . where w se 3nd w . are electron plasma and cyclotron frequencies,

respectively. Ty.pically vg/v, was varied from 0.6 to 3.6, where VEO-CE(/ B is the maximum

electron Ex B drift velocity located at x=xq .

II1. SIMULATION RESULTS AT LINEAR STAGE

A. Local Effects

Figure 3 shows a history plot of the simulation electrostatic energy of a single Fourier
mode at xq , where electrons have the largest Ex B drift velocities. According to local theory” ,
the region near xp is the most unstable area. The theoretical local growth rate is drawn as a
straight line . Simulation local growth rates and frequencies for different modes were measured
and compared with the theoretical results in the largest drift velocity region, as shown in Figs.

4(a)-(d) for vEJ v;=0.6 , 0.9, 1.2 and 3.6, respectively. The figure shows good agreement of
simulations with local theory during the early stage of wave growth.
B. Nonlocal Effects

From the simulations, it was found that nonlocal effects become important at later times.
and a coherent mode structure develops along x as shown in Fig. 5. Figure 6 shows a snapshot
of a potential contour plot from a single mode simulation, i.e., except for the k,=0 mode, only
one Fourier component in &, of electric potential was used to push the particles. The k,=~0
mode is necessary in order to allow an ambipolar electric field due to the charge separation.
Note that no Fourier transform of electric potential was made in the x direction. Therefore, all
possible &k, modes existed in our simulations. From Fig. 6, we found that plasma system can
be divided into three regions. At the most unstable region where electrons have the largest
Ex B drift velocities, the wave vector k was observed in the y direction as predicted by local
theory. The plasma has larger density in the region left of the maximum Ex B drift velocity
point. It was observed that the normal mode of the lower hybrid drift instability propagates

toward higher density with a mean wave vector k= qu(-—E'x+'é;) that is, with a k,=—k, . In the

PGP




second region, the lower hybrid drift wave was found to travel down the density gradient.

These phenomena may be explained by the following argument.
We have found the governing eigenmode equation for the lower hybrid drift instability in
a slab geometry to be'®

1 1 w

azcbky(x) wl/wl a/ve(x)/axam_v(x)_ .
TONB(X) 1rwlk/wl w—k,ve(x)

ax? +1+m3,/w§, N.(x) dx

T 1 1 w
- - (x) =0 (18)
I\/:41r)\f)i(x) Faal Tklv, % x)

for ve(X)<<v,. ¢ ky(x) is a Fourier component in &, of the perturbed electrostatic potential.

¢ky(x)

Let

¢ky(x) - w(x)expl—fa(x)dx] . (19)

and put this into Eq. (18) to obtain the standard form

duw(x)
—G_x—;—— Q(ky,w, x)(x) =0 , (20)
where
Q(k,,0,x) = Q,(k,w,x) + iQ,(kyw,x) , 21
2
1 g2 1149
Q (k. w,x) = k,2+ ?Wln(l"-w;/wcz,) + ry a—xln(l'i-w;,/wfz,)l (22)
1 1 w
AD(x) 14wi/wl o=k ve(x)
and
" 1 1 w
0l x) \/-Z_x},,-(x) 1+o /el Tkly, (23)

The perturbed electric potential is related to & through

i( kyy—wl)

o(x,y, () = [l+m§,(x)/w3,l—%-b(x)e (24)

The Fourier component ¢, (x) of the perturbed potential. was solved for numerically by using
k,

Eq. (20), and is shown in Fig. 5(b). Comparing the simulation result Figs. 5(a) with 5(b), we

see that the normal mode structures from simulations and theory are very similar.

In order to understand the contribution of resonant electrons and ions, we now derive an




equation of the wave energy flow. Assume wq is the eigenfrequency of the equation

g'—“{— 0,(ky . x) b (x) = 0 (25)
X :

where wo=w,+iy and y—0 . Expanding Q(k,,w,x) around wy gives

0k, %) = O kywo x) + %g(ky,%xm—m) - Qo+ iQog- . (26)
where Qg=Q(k,.wgx) , Qd-%ﬂg(k_v.wo.x) . and w—wyg is replaced by i3/9:. Substituting Eq.

(26) into Eq. (20), we get

_— - —_— - (27
3 2 QO“’ ’QO Y, 0. (27)

Muitipling Eq. (27) with ¢~ gives

3% _ 0003 .
b Y Qolwl?— iQgu e ) (28)

Subtracting Eq. (28) from its complex conjugate, we obtain

o alwl? 2,0 e80 B, 3w dw,
Re(Qy) Y +2Im Qylw! +’ax("’ P ax”’lmQ"”’ FYR a/) 0. (29

The physical meanings of those four terms in the above equation are the rate of wave
energy change, the source or sink ~f wave energy, the flux of the wave energy, and the fre-
quency shift due to grecwth or damping of the wave, respectively. The ratio of the second term
to the first term gives the growth or damping rate. Let us concentrate on the second term only.

According to Egs. (21)-(23), ImQq can be expressed as

1 1 . yk, vglx) 7w,
ImQp = —lim|— ' r
0 Api(X) [+wi/wé |y [w,—-k,. VE(X)'I*’Y: 2 kv,
- 1 —|-mk vﬂx)&[m,—k, vE(x)]+ z w,' (30)
Api(x) [+wi/wl Y : 2 lkiv,

The second term 1n Eq. (30) represents the resonant ions which drive the lower hybrid drift
instability, a negative energy wave, as predicted by local linear theory. The delta function in

the first term represents resonant eiectrons whose Ex B drift velocity equals to the v phase

velocity of the wave. The opposite sign of the first term from that of the second term shows




that those resonant electrons have stabilizing effects on the lower hybrid drift instability. Sup-

pose that the plasma has a density profile similar to the density profile shown in Fig. 2(a), and
the electron Ex B drift velocity as function of x is similar to the drift velocities in Fig. 2(b):
then there are two places in the system that electron drift velocities equal the y phase velocity
of the wave excited at the most unstable region. One resonant point is near the center of the
plasma ( x=1.2 in Fig. 2(b) ), and another is at the outer edge of the plasma (outside of our
simulation system in Fig. 2(b} ). Therefore, when the lower hybrid drift wave s excited at the
largest drift velocity region, the wave packet will travel in x to these two electron resonant

points, where it dumps wave energy into the resonant electrons.

1V. SATURATION MECHANISMS

Saturation mechanisms of the lower hybrid drift instability in a uniform magnetic field at
zero plasma beta and zero electron temperature were studied. Simulation results show that the
lower hybrid drift instability is stabilized by current relaxation which is due to both ion quasil-
inear diffusion and electron Ex B trapping. According to local theory, the neighborhood of the
point where electrons have the largest relative drift velocities is the most unstable region. In
this region, we found that the current relaxes by modification of the ion velocity distribution
function. Figures 7(a) and (b) are ion velocity distribution functions, averaged in x over the

whole system, versus v, and v, , respectively, for VE(/ v,=0.6 from a single mode simulation.

Small modifications of the ion distribution function occurred after saturation. The slight
flattening around a small negative v, in Fig. 7(a) shows that the wave propagates in the nega-
tive x direction. Similarly, Fig. 7(b) shows that the wave also propagates in the positive v
direction. Hence, the lower hybrid drift mode propagates up the density gradient. For a larger
drift velocity, the lower hybrid drift wave is more localized around the most unstable region.
Figures 8(a) and (b) are ion distribution functions averaged over x between x=214x and

x=32Ax , which is the most unstable region in the system, for on/ v,=3.6 from a single mode

simulation, where Ax is the grid cell size and there are 64 grids across the system in x. Larger

modifications of the ion velocity distribution functions are shown in this case.

\ ——y
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According to Drake and Huba . when the electron drift velocity, which ncludes both the
zeroth order and the perturbed £x B drift velocity in the y direction. is equal to or greater than
the wave phase velocity, electrons are in resonance with the wave. This electron ExB trapping

was observed in our simulations in the range that vf/ v,=0.6 10 3.6 . Figure 9 gives a snapshot
of an electron density contour plot for "Ea/ v,=0.9 from a single mode simulation. The similar-

ity of the electron density contour and the electric potential contour given in Fig. 6 shows that
electrons move ajong constant potential contours. and electrons around x=1.2 are trapped by
the wave. This electron Ex B8 trapping causes current relaxation by local flattening of the den-
sity profile around the trapping region as shown in Fig . 10 at x=1.2 and Fig. 11 at x=0.8 for

vey v.=0.9 and 3.6 . The other flattening of electron density profiles in Fig. 10 at x=3.0 and

Fig. 11 at x=2. are due 10 the ion quasilinear modifications in the most unstable regions. Fig-

ures 12(a) and (b) show electron phase space ( v, versus x ) for Ve vx=0.9 and 3.6 . The ini-

tial electron temperature is zero and the initial drift velocities are given by the solid curves. We
found that the averaged electron current was reduced after saturation of the wave. After sub-
tracting the guiding center velocity from the electron total velocity, electron heating (shown in
Fig. 13) due to electron ExB trapping was observed starting around the electron resonant
region ( x=1.2 as shown in Figs. 2(b) and 5 ) and gradually spreading to the whole plasma sys-
tem.

Finally, the simulated saturation levels are compared with saturation levels predicted by
both ion quasilinear diffusion theory*® and electron ExB trapping7 . The local approximation
was used in the ion quasilinear diffusion theory which gives the saturation level due to current

relaxation as

2
{ Ve
—_— ] 3
nT, 8 m l+w§,/wc2, ( V,,] G

where e=<3E*>/87 . Assuming that the most unstable mode is dominant, Eq. (31) can be

rewritten as

h
ebod 1L{m.t Ve
—_— - ] —] — )
T, 2 m ) v, (32
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where 8¢ is the perturbed clectrostatic potential. Assuming that the zeroth order ambipolar
electric field vanishes and setting the perturbed Ex B drift velocity equal to the wave phase
velocity, the saturation level of the most unstable mode due to electron ExB trapping is given
as

-1/2 k

] {1+m,,/ L,) (33)

e6¢ _1_

In Fig. 14, Eqgs. (32) and (33) are plotted for m/m,=100 , w’/w’=1 . and k,=k, . Simulation
levels are smaller than both the theoretically predicted levels by roughly a factor of two: this
could be due to the combination of ion quasilinear diffusion and electron ExB trapping

occurred in our simulations. From Fig. 14, our simulated data gives

ebd ~—[ ] ‘e (34)

Furthermore, vge—w/k, varies and even goes to zero at the electron resonant point in our simu-
lations, where vg is only the zeroth order Ex B drift velocity. This could cause electron E xB

trapping occurring at a lower level.

V. CONCLUSIONS

Two-dimensional electrostatic particle simulations of the lower hybrid drift instability in
the low drift velocity regime have been presented. Simulations show good agreement of the
measured local growth rates and frequencies with the results of local theory during the early
stage of wave growth. At later times nonlocal effects become important, and a coherent mode
structure develops. We found that the lower hybrid drift instability is stabilized by the local
current relaxation due to both ion quasilinear diffusion at the most unstable region and electron

—_— =

Ex B trapping around the electron resonant region. Electron heating due to electron Ex B

trapping was observed at the electron resonant region.
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Fig. § lon velocity distribution functions averaged over the most unstabie region { x=2. 10
x=3 )al w, =0 ( dashed curve ) and after saturation ( solid curve ) versus (a} v,

and () v, for \-E(/ v,=3.6 = Flattening in both negative v, region and positive v,

region shows that the wave propagates up the density gradient,
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Fig. 9 Electiron density contours for a single mode ( kA p,=0.707 ) at wpr=179.8 with

vgo/r,,=0.9 . Note similarity with Fig. 6 ¢ contours. implyving that elecirons move

atlong the potenual contours and Ex B trapping occurs around x=1.2 .
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Fig. 10 Electron density profile at w, =0 ( dashed curves } and after saturaiion ( solid

curves ) for m,/m,=100 . wa/wl=1 . and vi/v,=0.9 . The flatening wround x=1.2
is due 10 electron Ex B trapping, and the second flaticning between x=23und3 0 is

caused by ion quasilinear diffusion in the most unstable region.
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Fig. 11 Electron density profile at w =0 (dashed curves ) and after saturation { soiid curves

) for m/m=100 . wilw’=1 . and v /v, =36 FElectron £x B trapping modifies the
electron density profile arcund x=1 . The density modification due to 1on quastiinear

diffusion is occurred between x=2.0and2.5 which is the most unstable region.
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Fig. 12 Electron phase space ( v, versus x } for vp “v.= (3) 09 and (b} 36, respeciively
The inmttial electron temperature is zero and the imtal drift velocities are given 1n
solid curves  The averaged electron current was reduced atter saturation of the wave

around the iargest drift veiocity regions
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(a) Kinetic veiocity u, versus x , and (b) u, versus » . where

T=v—cEx B/B? and E is the total clectric field in the system. The spreading in v,

and u, shows that electrons were heated during the growth of the wave around ine

clectron resonant region ( x=1.2 ), and then the heat s diffused to the wnoie svs-

tem.
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Fig. 14  Saturated lower hybrid drift mode perturbed potential e¢/ T, as function of vE/ v, for

m/me=100 , wl/wl=1 and T,/T,=0 . Two saturation mechanisms are compared:

current relaxation (cr) and electron Ex B trapping ( ExB ). Simulation results are

represented by dots, roughly half that of either theory given separately.







